Sztuczna inteligencja diagnozuje bezobjawowych pacjentów COVID-19 ze 100-proc. skutecznością na podstawie analizy kaszlu. Naukowcy pracują już nad aplikacją mobilną

Naukowcy z Massachusetts Institute of Technology opracowali algorytm sztucznej inteligencji zdolny do wykrywania bezobjawowego zakażenia koronawirusem na podstawie próbek głosu. Zespół badawczy pracuje nad stworzeniem aplikacji mobilnej służącej do testów przesiewowych. – Skuteczne wdrożenie grupowego narzędzia diagnostycznego mogłoby ograniczyć rozprzestrzenianie się pandemii, gdyby wszyscy z niego skorzystali przed udaniem się do klasy, fabryki lub restauracji – przekonuje Brian Subirana, naukowiec z MIT.



– Naukowcy z MIT odkryli, że sposób kasłania osoby bez objawów COVID-19 może różnić się od osób zdrowych. Różnic tych nie da się usłyszeć ludzkim uchem, ale może je wychwycić sztuczna inteligencja – wskazuje Jennifer Chu z MIT News Office.

Naukowcy z MIT pracują nad tym, by ten model sztucznej inteligencji włączyć do wygodnej w obsłudze aplikacji mobilnej. Jeśli zostałaby ona zatwierdzona przez FDA (amerykańską Agencję ds. Żywności i Leków), to medycy na całym świecie mogliby zyskać bezpłatne narzędzie do badań przesiewowych o bardzo wysokiej wiarygodności. W trakcie badań wstępnych algorytm wykazał 98,5-proc. skuteczność w diagnozowaniu osób objawowych i 100-proc. skuteczność w diagnozowaniu pacjentów bezobjawowych.

– Nasze badania wskazują, że sposób, w jaki produkujemy dźwięk, zmienia się, gdy chorujemy na COVID-19, nawet jeśli nie mamy żadnych objawów. Na dźwięki mówienia i kaszlu wpływają struny głosowe i otaczające je narządy. Oznacza to, że część mowy człowieka przypomina kaszel, a kaszel w części przypomina mowę. Oznacza to również, że rzeczy, które łatwo wyprowadzamy z płynnej mowy, sztuczna inteligencja może wychwycić po prostu z kaszlu, w tym takie rzeczy jak płeć osoby, język ojczysty, a nawet stan emocjonalny – podkreśla Brian Subirana, naukowiec z Laboratorium Auto-ID MIT.

Do diagnozowania zakażenia SARS-CoV-2 zostały wykorzystane biomarkery choroby Alzheimera. W pierwszej fazie prac naukowcy na bazie tysiąca godzin nagrań wyszkolili ogólny algorytm uczenia maszynowego, służący do rozróżniania dźwięków związanych z różnym nasileniem pracy strun głosowych. Potem zespół wyszkolił drugą sieć neuronową do rozróżniania stanów emocjonalnych uwydatnionych w mowie i charakterystycznych dla chorób neurologicznych. Następnie naukowcy wyszkolili na bazie danych z nagrań kaszlu trzecią sieć neuronową zdolną wykrywać zmiany w wydolności płuc i układu oddechowego. Po połączeniu wszystkich trzech narzędzi powstał algorytm zdolny diagnozować kaszel pod kątem cech charakterystycznych dla choroby COVID-19. Narzędzie jest ogromną szansą na wczesne diagnozowanie choroby.

Tymczasem sztuczna inteligencja coraz skuteczniej radzi sobie z diagnozowaniem zakażenia nowym koronawirusem na podstawie różnego rodzaju danych uzyskiwanych w badaniach. Amerykańska firma Novarad udostępniła do bezpłatnego pobrania asystenta diagnostycznego AI COVID-19, który umożliwia szybkie i zautomatyzowane diagnozowanie choroby na podstawie skanów pozyskanych z tomografii komputerowej płuc pacjentów. Narzędzie pozwala nie tylko diagnozować zachorowanie, ale i oceniać stopień zajęcia płuc zmianami chorobowymi.

– Skuteczne wdrożenie grupowego narzędzia diagnostycznego mogłoby ograniczyć rozprzestrzenianie się pandemii, gdyby wszyscy z niego skorzystali przed udaniem się do klasy, fabryki lub restauracji  – przekonuje Brian Subirana.


autor/ źródło: Infonfz/Newseria


Zobacz też

 Przeczytaj dodatkowo




Zarządzenie NFZ ws. zespołu ds. finansowania SOR


Fundusz opublikował zarządzenie zmieniające zarządzenie ws. powołania zespołu ds. opracowania nowych rozwiązań systemowych finansowania…



Prof. Jędrzejczak ostro o nowych przepisach dla konsultantów

Rodzice żądają 1 mln zł zadośćuczynienia za…

Obecność pediatry w podstawowej opiece zdrowotnej…

Nieodpłatne szkolenia dot. opieki paliatywnej zwolnione…

Czy można zniszczyć oryginał dokumentacji medycznej?

Redakcja

Zarządzenie prezesa NFZ ws. wzoru deklaracji wyboru

Traci moc zarządzenie nr 42/2007/DŚOZ Prezesa Narodowego Funduszu Zdrowia z dnia 2 lipca 2007 r. w sprawie wzoru deklaracji wyboru lekarza, pielęgniarki i położnej podstawowej opieki zdrowotnej. Zostało zastąpione zarządzeniem nr 33/2014/DSOZ,…
NFZ
NFZ

Rusza sezon szczepień przeciwko grypie

Poszkodowany pacjent powinien mieć pewność rekompensaty

Warszawa: prezydent chce wycofać z TK wniosek ws.…